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Because of beam loading, each bunch in a bunch train will see different RF fields. Thus, each

bunch is essentially having its motion governed by a different Hamiltonian. If all bunches are

injected at the same reference point in their respective buckets, some of them must be injected

unmatched. In particular, the center of the bunch distribution will not be the fixed point in the

RF bucket. This leads to the bunch undergoing synchrotron oscillations about the fixed point of

its Hamiltonian, and eventually filamenting into a bunch with a larger emittance and a different

distribution center than it originally had. In this paper we compute the fixed point, oscillation

amplitude, and emittance growth for a bunch in a chain of linacs and arcs. This paper does

not treat the problem self-consistently: the preceding bunches are assumed to be fixed in their

buckets, and eigenmodes of collective oscillation for the bunch train are not computed.

I. SMOOTHED HAMILTONIAN

Let’s begin with the Hamiltonian

H = −1

2
A56∆

2 +
qv̄

ω
sin(ωτ + φ̄)

− qv

ω
(ωτ cosφ + sinφ). (1)

This is a Hamiltonian which is being accelerated with a
gradient v̄ where the reference particle arrives at a phase
φ̄ behind the crest or the RF. ∆ is the difference in energy
from that of a reference particle which is accelerated with
a gradient v and arriving at a phase φ̄ behind the crest
of the RF. τ is the difference in arrival time from the
reference particle accelerated with gradient v and phase
φ. For the purposes of this discussion, let’s consider v, v̄,
φ, φ̄ and A56 to be constant along the beam line.

In general, the fixed point of this Hamiltonian will not
be at τ = 0. We can compute the equations of motion
for this Hamiltonian:

dτ

ds
= A56∆

d∆

ds
= qv̄ cos(ωτ + φ̄)− qv cosφ. (2)

The fixed point for this Hamiltonian is ∆ = 0 and at τ
given by the solution of the equation

v̄ cos(ωτ + φ̄) = v cosφ. (3)

If v̄ > v cosφ, then there is a solution of this equation,
which is

ωτ = cos−1
(v

v̄
cosφ

)

− φ̄. (4)

If v̄ < v cosφ, there is no solution to this equation.
Thus, if beam loading reduces the gradient so much that
v̄ < v cosφ, the bunch will be lost. The Hamiltonian

linearized about this fixed point, if it exists, is
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]2
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2
A56∆

2. (5)

Now let’s say we’re injecting a bunch at τ = τ0 and
∆ = 0, with the covariance matrix

Σ =

[

σττ στ∆

στ∆ σ∆∆

]

. (6)

The transformation U is

U =

[

B−1/4 0
0 B1/4

]

B =
qω

√

v̄2 − v2 cos2 φ2

A56
(7)

The result is that

〈J〉 =
1

2
(B1/2σττ + B−1/2σ∆∆)

+
1
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ω2
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)

+ φ̄
]2

. (8)

This allows the computation of the emittance growth.
Let’s take a simple example: say the bunch is injected

at τ0 = 0, and is properly matched to the RF without
beam loading (i.e., v̄ = v and φ̄ = φ). Then the emittance
will blow up to

1

2
εL

[

(v̄2 − v2 cos2 φ)1/4

√
v sin φ

+

√
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Assuming that the changes in the RF parameters are
small, this becomes

εL +
εL
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∆(v cosφ)

v sin φ

]2

.

(10)



2

A Beam Loading

If a charge q passes through the linac at a phase φ, the
change in voltage and phase is given by the relation

∆(v cosφ) =
qωrs

2Q
(11)

and ∆(v cosφ) = ∆v/ cosφ. First, let’s determine under
what conditions the beam will still be captured by the
RF. The requirement that v̄ > v cosφ translates into

v2 − qrsω

Q
v cosφ +

(

qrsω

2Q

)2

> v cosφ. (12)

Solving for v, this means that

v >
qrsω

2Q
csc2 φ

[

cosφ +
√

cos(2φ)
]

. (13)

First of all, this indicates that there is a stable solution
when |φ| > 45◦.

When ∆v is small, the relative error in the emittance
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We can similarly compute the maximum average en-
ergy that the beam will have, assuming that the beam
does not filament. That mean energy is
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q
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∣

∣
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∣

∣

∣
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Again, assuming a bunch injected with τ0 = 0 and small
∆v, we get that the maximum energy error is

√

ω

A56qv sin φ

q2rs

2Q
. (16)

This gives an energy error relative to the RMS energy
spread of

qrs

2Qστv sinφ
. (17)

II. EXAMPLES

Let’s take an example where we scale Tesla cavities; at
1300 MHz, rs/Q = 1 kΩ/m and v = 25 MV/m. We scale
rs/Q with the square root of frequency and v with the
square root of frequency. Assume 2×1012 muons. Table I
shows the results. Note that the figures assume that the
central bunch with beam loading has the right energy
gain, so effectively only half of the particles contribute to
the energy offset and emittance blowup.

APPENDIX A: EMITTANCE COMPUTATION

Begin with the computation of some important quan-
tities. Note that if A is an n × n matrix, and x is a
n-dimensional vector,

1

(2π)n/2

1√
det A

∫

e−x
T Ax/2dx = 1 (A1)

1

(2π)n/2

1√
det A

∫

xx
T e−x

T Ax/2dx = A−1. (A2)

Let’s say that the linear transfer map for a beamline is
M . Further, let’s say that there is a symplectic transfor-
mation U such that M = URU−1 where R is a rotation
matrix. That rotation matrix can be broken into coordi-
nate pairs such that projecting out that pair of coordi-
nates,

Rk = PkRPk =

[

cosµk sin µk

− sinµk cosµk

]

(A3)

Then the action variables can be defined as

Jk =
1

2
x

T U−1T
PkU−1

x. (A4)

Computing the expectation value for Jk when the parti-
cles are distributed according to a Gaussian distribution
with covariance matrix Σ, and offset x0, we find

〈Jk〉 =
1

2
Tr(PkU−1ΣU−1T

Pk) +
1

2
x

T
0 U−1T

PkU−1
x0

(A5)

APPENDIX B: BUCKET AREA

Consider the Hamiltonian

H = −1

2
A56∆

2 +
qv

ω
[sin(ωτ + φ)− ωτ cosφ− sinφ].

(B1)

We wish to find the area of the RF bucket. At the bucket
separatrix (∆ = 0, ωτ = −2φ), the value of the Hamil-
tonian is

2(φ cosφ− sinφ) (B2)

The value of ∆ for the separatrix at any point τ is

√

2qv

ωA56

√

sin(ωτ + φ) + sinφ− (2φ + ωτ) cosφ (B3)

Thus, the bucket area will be

√

2qv

ω3A56
f(φ), (B4)
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TABLE I: Neutrino factory example.
pminc pminc f n φ στ σ∆ ∆E ∆E/σ∆ ∆E/E ∆εL/εL

GeV GeV MHz ◦ ps MeV MeV % % %

3 12 200 4 26 111 84 2.2 2.6 0.018 0.03

3 12 200 6 29 126 74 1.5 2.1 0.013 0.02

3 12 200 11 35 153 61 0.9 1.4 0.007 0.01

3 12 200 22 43 188 50 0.5 1.0 0.004 0.00

3 12 400 4 32 69 136 6.6 4.9 0.055 0.12

3 12 400 5 34 74 127 5.5 4.3 0.045 0.09

3 12 400 6 36 78 120 4.7 3.9 0.039 0.08

3 12 400 11 43 94 100 2.8 2.8 0.023 0.04

3 12 400 4 40 43 220 20.0 9.1 0.167 0.42

3 12 400 5 42 46 206 16.8 8.2 0.140 0.34

12 50 200 4 16 70 135 8.8 6.5 0.018 0.22

12 50 200 6 19 80 118 5.7 4.8 0.011 0.12

12 50 200 11 23 97 97 3.2 3.3 0.006 0.06

12 50 200 23 29 123 77 1.6 2.1 0.003 0.02

12 50 400 4 20 44 215 25.4 11.8 0.051 0.71

12 50 400 6 23 50 188 17.1 9.1 0.034 0.42

12 50 400 11 28 61 155 9.6 6.2 0.019 0.20

12 50 400 23 35 76 123 5.0 4.1 0.010 0.08

12 50 800 4 26 27 343 72.8 21.2 0.146 2.30

12 50 800 6 29 31 302 50.5 16.7 0.101 1.43

12 50 800 11 35 38 250 28.2 11.5 0.058 0.68

12 50 800 23 43 47 201 15.8 7.8 0.032 0.31

where

f(φ) =

∫ φmax(φ)

−2φ

√

sin(x + φ) + sin φ− (2φ + x) cosφ

(B5)

and φmax(φ) is the value of x near φ where the argument
of the square root is zero.

For small φ, we can find a series expansion for φmax(φ)

φmax ≈ φ +
φ3

10
+

29

1400
φ5 +

221

42000
φ7

+
346, 943

232, 848, 000
φ9 + O(φ11) (B6)

and for f(φ):

f(φ) ≈ 6
√

2

5
φ5/2 −

√
2

50
φ9/2 +

1607
√

2

254800
φ13/2 + O(φ17/2).

(B7)

The procedure for obtaining these expansions is as fol-
lows: first, find an expansion φmax(φ) out to order 2k+1
in φ. Next, expand the integrand divided by 2y + x in
powers of [φmax(φ) − x] to order k + 1/2, keeping the
coefficient of the lth power out to order k + 1/2 − l in
φ. The individual terms can now be integrated, and the
result is good to order k + 5/2 in φ.
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